Information Booklet cum Syllabus of

Foundation of Machine Learning

September 2024

National Institute of Electronics and Information Technology

An Autonomous Scientific Society under Ministry of Electronics and Information Technology, Government of India

> NIELIT Gorakhpur Deoria Road Gorakhpur (U.P.)-273010

	CONTENTS		
Sl. No.	Title	Page No.	
1.	About the course	3	
2.	NIELIT	3	
3.	Objective of Course	3	
4.	Job Role of Course	3-4	
5.	Eligibility	4	
6.	Total duration of the Course	4	
7.	Course Details	4-5	
8.	Reference Books	5	

1. About Course

The "**Foundation of Machine Learning**" is a four-week course designed to build solid foundation in machine learning. The course begins with mathematical concepts and guides students through important supervised and unsupervised methods such as nearest neighbors, naive Bayes, decision trees, and strategic alliances. This course also introduces students to the basic of Python Programming to contain control structure, conditional statement, function Sequence Data type and numpy that make students to more skilled.

2. NIELIT

National Institute of Electronics and Information Technology, NIELIT, (Erstwhile DOEACC Society) is an autonomous scientific society of the Ministry of Electronics & Information Technology, Government of India. The Society is registered under the Societies Registration Act, 1860. NIELIT was set up to carry out Human Resource Development and related activities in the area of Information, Electronics & Communications Technology (IECT). NIELIT is engaged both in Formal & Non-Formal Education in the areas of IECT besides development of industry-oriented quality education and training programmes in the state-of-the-art areas. NIELIT has endeavored to establish standards to be the country's premier institution for Examination and Certification in the field of IECT. It is also one of the National Examination Body, which accredits institutes/organizations for conducting courses in IT and Electronics in the non-formal sector.

3. Objective of Course

This course introduces students to the basic concepts and techniques of Machine Learning. The objective of this course is to develop the skills required for Machine Learning Technologies with use of Python to analyze data and solving ML problems like Regression and Classification using machine learning algorithms

By the end of the course, students will:

- Understand the basics of Python language.
- Learn essential mathematics for Machine Learning.
- Understand and apply key Machine Learning algorithms in both supervised and unsupervised learning.
- Develop the ability to preprocess, clean, and visualize data effectively.
- Learn to evaluate and optimize Machine Learning models to improve their performance.
- Apply these skills in real-world scenarios through hands-on projects and case studies.

This course aims to build a strong foundation, enabling students to confidently pursue more advanced topics in Machine Learning and Artificial Intelligence.

4. Job Roles of Course

After successful completion of this course, students will be well-equipped for a range of impactful job roles in the data science and Machine Learning fields. This course prepares graduates to excel as:

Machine Learning Engineer

- Machine Learning Developer
- AI Researcher

5. Eligibility

Passed or pursuing BE / B.Tech. (Any Branch), BCA, MCA, 3-Year Diploma (Computer Science / Electronics/ IT),NIELIT O/A Level, Graduate in Commerce / Statistics / Mathematics/ Operational Research.

6. Total duration of the Course : 60 Hours

7. Course Details

Day	Course content	
1-2	asic Mathematics	
	 Matrix multiplication and inversion 	
	 Probability theory basics (conditional probability, Bayes' theorem) 	
	 Descriptive statistics (mean, median, mode, variance) 	
	• Probability distributions (normal distribution, binomial distribution)	
3-4	Basic Python and Libraries	
	• Python IDE installation	
	 Basics of python 	
	• Functions	
	• Essential libraries for machine learning (numpy, matplotlib, pandas etc.)	
5	troduction to Machine Learning	
	• What is Machine Learning?	
	 History and Evolution of Machine Learning 	
	 Applications of Machine Learning in Various Fields 	
	• Overview of Supervised, Unsupervised, and Reinforcement Learning.	
6-7	Data Visualization	
	 Understanding Data: Types, Features, Labels, and Instances 	
	• Types of Machine Learning Problems: Classification, Regression,	
	Clustering.	
	 Data Preprocessing & Data Cleaning: Handling Missing Data, Outliers 	
	 Dimensionality Reduction Techniques (Overview of PCA) 	
8	Introduction to Supervised Learning	
	 Understanding Supervised Learning 	
	 Difference Between Supervised and Unsupervised Learning 	
	 Overview of Classification and Regression Tasks 	
9	Classification Algorithms	
	 Introduction to Classification 	
	 Curse of Dimensionality/Perceptron 	
	 k-Nearest Neighbours (k-NN): Distance Metrics and Voting 	

10-11	Some advanced Algorithms	
10 11	• Naïve Bayes	
	• Gradient Descent	
	• Decision tree	
	• Splitting criteria of decision tree	
12	Key Regression Algorithms	
	 Introduction to Regression 	
	 Logistic Regression 	
13	Linear Regression and Errors	
	 Linear Regression: Concepts, Assumptions, and Interpretation 	
	 Case studies of different Supervised Algorithms. 	
	 Evaluating Regression Models: MSE, RMSE, R² Score etc. 	
14	Clustering Algorithms	
	 Introduction to Clustering 	
	 k-Means Clustering: Centroid Calculation and Cluster Formation 	
	• Hierarchical Clustering: Agglomerative and Divisive Approaches	
15	Dimensionality Reduction Techniques and Model Evaluation	
	 Principal Component Analysis (PCA): Concept and Applications 	
	 Hyperparameters Tuning 	
	 Importance of Model Evaluation 	
	 Cross-Validation Techniques: k-Fold, Leave-One-Out 	
16	Bias and Variance & Model Selection	
	• Bias-Variance Trade off	
	 Avoiding Overfitting and Underfitting 	
	 Ensemble Methods (Bagging & Boosting) 	
	Adaboost and Random Forest	
17-18	Practical Applications, Project and Case Studies	
	• Case Study 1: Regression model	
	• Case Study 2: Classification model	
	• Case Study 3: Clustering model	
10.00	• Applying Concepts to Solve a Real-World Problem in form of a Project	
19-20	Project	
	 Project: To Solve a Real-World Problem Doubt session 	
	 Challenges faced and doubt solving 	

8. Reference Books/Study Material

- Machine Learning an algorithmic Perspective by Stephen Marshland.
- Introduction to Machine Learning with Python by Andreas C Muller, Sarah Guido.
- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition by Aurélien Géron.