

NATIONAL INSTITUTE OF ELECTRONICS & INFORMATION TECHNOLOGY NOIDA

National Institute of Electronics and Information Technology, NOIDA

Name of Group: Centre of Excellence in Chip Design at NIELIT NOIDA in association with SoCTeamup Semiconductors Pvt Ltd as industry partner

Name of Course: One-week Short Term Course & Training Program on VLSI Design

Objective: The one-week VLSI course aims to provide a comprehensive overview of Very Large Scale Integration concepts, covering digital design methodologies, ASIC and FPGA technologies, physical design, and testing. Participants will gain hands-on experience with **Cadence EDA toolsuite**, explore power-efficient design strategies, and delve into emerging trends. The course emphasizes practical applications through project work and offers insights from industry experts who have delivered **30+ chip tapeouts** for top design houses like Intel, STMicroelectronics, NXP to name a few, enabling a foundational understanding of VLSI principles and practices in a condensed timeframe.

Duration: 5 Days (30 Hours)

NOTE: Only in physical mode. **Limited seats (Only 20)**

Eligibility: Students who have completed or pursuing B.E. / B.Tech. / M.E / M.Tech. **Note**: Research Scholars, Faculty members and Industry professionals can also enrol **Prerequisites:** -

- 1. Basic knowledge of digital circuits and logic gates.
- 2. Familiarity with a hardware description language (HDL) such as Verilog or VHDL
- 3. Familiarity with a Unix/Linux environment and command-line interface

Course Fees: Rs. 2,950/- (incl. GST)

Course Date: 18th March 2024 (Tentative)

Registration Process: Candidates have to apply in prescribed application form through online registration portal https://regn.nielitvte.edu.in or through Android App "NIELIT Kaushal Setu". The duly filled form along with the course fees Rs. 3,540/- (incl. GST) has to be submitted in online mode through the above link. The Fees deposited is Non-Refundable.

Course Content:

Day 1	Inauguration & Invited talk
	FPGAs: Types, Architecture, Applications
	FPGAs: Hands on Session
	1. HDL Design, Simulation
	2. Dumping Code into FPGA
	3. Hardware Debugging
	4. Mark Debug Feature
	5. Integrated Logic Analyzer (ILA) core

Additional Director/Scientist 'E' & OIC, CoE Chip Design Noida Centre

PRASHANT PAL (Scientist-C)

National Institute of Electronics and Information Technology, NOIDA

Hands on Session 1. FPGA based Synthesis, Design and Implementation 2. Implementation and Static Timing Analysis Day 3 ASIC Design Flow: Lecture, Demonstration, Lab session 1. Semi-custom Design Flow 2. Full-custom Design Flow 3. IP Development RTL Design & Verification: Lecture, Demonstration, Lab session 1. Overview of RTL Integration 2. RTL Linting Concepts 3. Clock Domain Crossing Concepts 4. SoC Methodology & IP Integration 5. System Verilog 6. UVM, OVM, System C 7. Verification IPs Day 4 Synthesis: Lecture, Demonstration, Lab Session 1. Compilation 2. Elaboration 3. Various Synthesis Optimization Techniques 4. Low Power Features (IEEE 1801-2018) 5. Physical Aware Synthesis Flow 6. Optimization wrt Area & Timing Concepts 7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT 2. Test Architecture	
2. Implementation and Static Timing Analysis Day 3 ASIC Design Flow: Lecture, Demonstration, Lab session 1. Semi-custom Design Flow 2. Full-custom Design Flow 3. IP Development RTL Design & Verification: Lecture, Demonstration, Lab session 1. Overview of RTL Integration 2. RTL Linting Concepts 3. Clock Domain Crossing Concepts 4. SoC Methodology & IP Integration 5. System Verilog 6. UVM, OVM, System C 7. Verification IPs Day 4 Synthesis: Lecture, Demonstration, Lab Session 1. Compilation 2. Elaboration 3. Various Synthesis Optimization Techniques 4. Low Power Features (IEEE 1801-2018) 5. Physical Aware Synthesis Flow 6. Optimization wrt Area & Timing Concepts 7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
2. Implementation and Static Timing Analysis Day 3 ASIC Design Flow: Lecture, Demonstration, Lab session 1. Semi-custom Design Flow 2. Full-custom Design Flow 3. IP Development RTL Design & Verification: Lecture, Demonstration, Lab session 1. Overview of RTL Integration 2. RTL Linting Concepts 3. Clock Domain Crossing Concepts 4. SoC Methodology & IP Integration 5. System Verilog 6. UVM, OVM, System C 7. Verification IPs Day 4 Synthesis: Lecture, Demonstration, Lab Session 1. Compilation 2. Elaboration 3. Various Synthesis Optimization Techniques 4. Low Power Features (IEEE 1801-2018) 5. Physical Aware Synthesis Flow 6. Optimization wrt Area & Timing Concepts 7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
ASIC Design Flow: Lecture, Demonstration, Lab session 1. Semi-custom Design Flow 2. Full-custom Design Flow 3. IP Development RTL Design & Verification: Lecture, Demonstration, Lab session 1. Overview of RTL Integration 2. RTL Linting Concepts 3. Clock Domain Crossing Concepts 4. SoC Methodology & IP Integration 5. System Verilog 6. UVM, OVM, System C 7. Verification IPs Day 4 Synthesis: Lecture, Demonstration, Lab Session 1. Compilation 2. Elaboration 3. Various Synthesis Optimization Techniques 4. Low Power Features (IEEE 1801-2018) 5. Physical Aware Synthesis Flow 6. Optimization wrt Area & Timing Concepts 7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
1. Semi-custom Design Flow 2. Full-custom Design Flow 3. IP Development RTL Design & Verification: Lecture, Demonstration, Lab session 1. Overview of RTL Integration 2. RTL Linting Concepts 3. Clock Domain Crossing Concepts 4. SoC Methodology & IP Integration 5. System Verilog 6. UVM, OVM, System C 7. Verification IPs Day 4 Synthesis: Lecture, Demonstration, Lab Session 1. Compilation 2. Elaboration 3. Various Synthesis Optimization Techniques 4. Low Power Features (IEEE 1801-2018) 5. Physical Aware Synthesis Flow 6. Optimization wrt Area & Timing Concepts 7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
2. Full-custom Design Flow 3. IP Development RTL Design & Verification: Lecture, Demonstration, Lab session 1. Overview of RTL Integration 2. RTL Linting Concepts 3. Clock Domain Crossing Concepts 4. SoC Methodology & IP Integration 5. System Verilog 6. UVM, OVM, System C 7. Verification IPs Day 4 Synthesis: Lecture, Demonstration, Lab Session 1. Compilation 2. Elaboration 3. Various Synthesis Optimization Techniques 4. Low Power Features (IEEE 1801-2018) 5. Physical Aware Synthesis Flow 6. Optimization wrt Area & Timing Concepts 7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
RTL Design & Verification: Lecture, Demonstration, Lab session 1. Overview of RTL Integration 2. RTL Linting Concepts 3. Clock Domain Crossing Concepts 4. SoC Methodology & IP Integration 5. System Verilog 6. UVM, OVM, System C 7. Verification IPs Day 4 Synthesis: Lecture, Demonstration, Lab Session 1. Compilation 2. Elaboration 3. Various Synthesis Optimization Techniques 4. Low Power Features (IEEE 1801-2018) 5. Physical Aware Synthesis Flow 6. Optimization wrt Area & Timing Concepts 7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
RTL Design & Verification: Lecture, Demonstration, Lab session 1. Overview of RTL Integration 2. RTL Linting Concepts 3. Clock Domain Crossing Concepts 4. SoC Methodology & IP Integration 5. System Verilog 6. UVM, OVM, System C 7. Verification IPs Day 4 Synthesis: Lecture, Demonstration, Lab Session 1. Compilation 2. Elaboration 3. Various Synthesis Optimization Techniques 4. Low Power Features (IEEE 1801-2018) 5. Physical Aware Synthesis Flow 6. Optimization wrt Area & Timing Concepts 7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
1. Overview of RTL Integration 2. RTL Linting Concepts 3. Clock Domain Crossing Concepts 4. SoC Methodology & IP Integration 5. System Verilog 6. UVM, OVM, System C 7. Verification IPs Day 4 Synthesis: Lecture, Demonstration, Lab Session 1. Compilation 2. Elaboration 3. Various Synthesis Optimization Techniques 4. Low Power Features (IEEE 1801-2018) 5. Physical Aware Synthesis Flow 6. Optimization wrt Area & Timing Concepts 7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
2. RTL Linting Concepts 3. Clock Domain Crossing Concepts 4. SoC Methodology & IP Integration 5. System Verilog 6. UVM, OVM, System C 7. Verification IPs Day 4 Synthesis: Lecture, Demonstration, Lab Session 1. Compilation 2. Elaboration 3. Various Synthesis Optimization Techniques 4. Low Power Features (IEEE 1801-2018) 5. Physical Aware Synthesis Flow 6. Optimization wrt Area & Timing Concepts 7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
3. Clock Domain Crossing Concepts 4. SoC Methodology & IP Integration 5. System Verilog 6. UVM, OVM, System C 7. Verification IPs Day 4 Synthesis: Lecture, Demonstration, Lab Session 1. Compilation 2. Elaboration 3. Various Synthesis Optimization Techniques 4. Low Power Features (IEEE 1801-2018) 5. Physical Aware Synthesis Flow 6. Optimization wrt Area & Timing Concepts 7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
4. SoC Methodology & IP Integration 5. System Verilog 6. UVM, OVM, System C 7. Verification IPs Day 4 Synthesis: Lecture, Demonstration, Lab Session 1. Compilation 2. Elaboration 3. Various Synthesis Optimization Techniques 4. Low Power Features (IEEE 1801-2018) 5. Physical Aware Synthesis Flow 6. Optimization wrt Area & Timing Concepts 7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
5. System Verilog 6. UVM, OVM, System C 7. Verification IPs Day 4 Synthesis: Lecture, Demonstration, Lab Session 1. Compilation 2. Elaboration 3. Various Synthesis Optimization Techniques 4. Low Power Features (IEEE 1801-2018) 5. Physical Aware Synthesis Flow 6. Optimization wrt Area & Timing Concepts 7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
6. UVM, OVM, System C 7. Verification IPs Day 4 Synthesis: Lecture, Demonstration, Lab Session 1. Compilation 2. Elaboration 3. Various Synthesis Optimization Techniques 4. Low Power Features (IEEE 1801-2018) 5. Physical Aware Synthesis Flow 6. Optimization wrt Area & Timing Concepts 7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
7. Verification IPs Day 4 Synthesis: Lecture, Demonstration, Lab Session 1. Compilation 2. Elaboration 3. Various Synthesis Optimization Techniques 4. Low Power Features (IEEE 1801-2018) 5. Physical Aware Synthesis Flow 6. Optimization wrt Area & Timing Concepts 7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
Day 4 Synthesis: Lecture, Demonstration, Lab Session 1. Compilation 2. Elaboration 3. Various Synthesis Optimization Techniques 4. Low Power Features (IEEE 1801-2018) 5. Physical Aware Synthesis Flow 6. Optimization wrt Area & Timing Concepts 7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
 Compilation Elaboration Various Synthesis Optimization Techniques Low Power Features (IEEE 1801-2018) Physical Aware Synthesis Flow Optimization wrt Area & Timing Concepts Synthesis Output: Netlist, Abstract Models, Hard Macros etc. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio Basics of DFT 	
 Elaboration Various Synthesis Optimization Techniques Low Power Features (IEEE 1801-2018) Physical Aware Synthesis Flow Optimization wrt Area & Timing Concepts Synthesis Output: Netlist, Abstract Models, Hard Macros etc. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio Basics of DFT 	
 Various Synthesis Optimization Techniques Low Power Features (IEEE 1801-2018) Physical Aware Synthesis Flow Optimization wrt Area & Timing Concepts Synthesis Output: Netlist, Abstract Models, Hard Macros etc. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio Basics of DFT 	
 Low Power Features (IEEE 1801-2018) Physical Aware Synthesis Flow Optimization wrt Area & Timing Concepts Synthesis Output: Netlist, Abstract Models, Hard Macros etc. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio Basics of DFT 	
 Physical Aware Synthesis Flow Optimization wrt Area & Timing Concepts Synthesis Output: Netlist, Abstract Models, Hard Macros etc. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio Basics of DFT 	
 6. Optimization wrt Area & Timing Concepts 7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT 	
7. Synthesis Output: Netlist, Abstract Models, Hard Macros etc. 8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
8. Unified Power Format (UPF), Logical equivalence Check Concepts DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
DFT (Design for Testability): Lecture, Demonstration, Lab Sessio 1. Basics of DFT	
	n
2. Test Architecture	
3. Scan Chain Insertion, Compression Insertion	
4. Clock & Reset Controllability	
5. ATPG	
6. JTAG, Boundry Scan	
7. MBIST/LBIST	
Day 5 DFT Lab Session Contd	
Physical Design: Lecture, Demonstration, Lab Session	
1. Floorplan, Placement, Routing	
2. CTS	
3. Multiple Clocks and Exceptions	
Q & A	

^{*} There will be 6 Hours Session per day.

Additional Director/Scientist 'E' & OIC, CoE Chip Design Noida Centre

PRASHANT PAL (Scientist-C)

National Institute of Electronics and Information Technology, NOIDA

Mode of Payment: Fees can be paid either by debit/credit card or in any online mode. For any queries and more details please contact on **8218724641/9711177638**

Course Venue

NIELIT NOIDA, IETE NOIDA Centre Building, PS-1D, Behind Brahampurtra Shopping Complex Sector 29, Noida, Uttar Pradesh 201301

Registration Link:

https://regn.nielitvte.edu.in/m/m-courseinfo.php?ci=178

or

Through Android App "NIELIT Kaushal Setu"